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content of the utterances are the concrete objects mentioned
(persistent patterns of perceptual activation in the case of vi-

We present an embodied, situated natural language user in the sjon, and also those affordances ready-to-hand with the object,

form of a spoken dialog system on the STanford Al Robot
(STAIR). Combining a limited vocabulary HMM-based speech
recognizer with sliding window object detection from monoc-
ular vision and and robotic manipulation with a five degree-of-
freedom arm, we demonstrate the feasability of a mobile robot
able to find (perceive) and manipulate common household ob-
jects. Our main focus is on the connection from speech and lan-
guage to non-linguistic knowledge (perception of objects cur-
rently in the visual field) and capabilities (e.g. grasping of ob-
jects or speech synthesis). This task provides a nagutahsic
evaluation of the various subcomponents. We can now more

such as the “easy” grasp point of the handle of a coffee mug
[11, 9)).

Our system is a set of software modules in a distributed,
real-time computing environment called the Robot Operating
System (ROS). The rest of this technical report outlines the de-
sign of the specific modules, both linguistic and non-linguistic,
and on the quantitative evaluation of each subcomponent. These
modules communicate in a variety of formats, such as text
strings from the ASR component and to the speech synthesis
module (see Sectio?)

We report positive evaluation results of our speech recogni-

accurately address questions such as how accurate our object tion and “understanding” system in Sect@rinfortunately we

recognition system needs to be to realize a concrete activity.

1. Introduction

We present a situated, embodied natural language user in the
form of a spoken dialog system on the STanford Al Robot
(STAIR). In contrast to telephone dialog systems or the analysis
of text corpora, we explore the connection between language -
in the form of speech recognition and synthesis, perception - in
the form of monocular object detection and depth estimation,
and non-linguistic physical activity - in the form of a 5 degree-
of-freedom (DOF) grasping arm. Receiving audio input through
a wireless microphone worn in the ear of the user, STAIR uses
the CMU Sphinx3 automatic speech recognizer to extract the
maximum a posteriori word string from a given utterance. We
restrict output over a limited vocabulary related to the fetching
or bringing of common household objects. STAIR connects the
usage of these words to the world in two ways: concrete nouns
have a corresponding trained object classifier (see Se8jion
and realizations of verbs with the correct syntactic arguments
induce routines of activity on STAIR.

Situated, embodied language use falls under the banner of
pragmatics the study of thaeisageof languagé. In contrast to
other NLP tasks such as information extraction (Ig) jvhich
focus on the descriptive or propositional content of utterances,
situated language use dealsiliocutionary acts (e.g. speech
acts [L8]) andperformativeutterancesg], such as asking some-
one to get something for you, or promising to do something
in the future. As IE systems depend on epistemological the-
ories such as standard probabilistic knowledge representation
[14, 12], we rely on theories odctivity, or more plainly stated:
the constant redecision of what to do noby 13, 8]. In this
project, requests and commitments to fetch objects are illocu-
tionary acts we employ, and the propositional or descriptive

1As opposed to the study of speaker or situation-indepemdeanh-
ing, usually referred to asemantics There is an active debate over
whether there is really any distinction to be made hdg [

do not include an empirical system-wide evaluation, as we have
not yet completely realized the object fetching activity. Instead,
after STAIR recognizes a verbal fetch request, STAIR looks for
an object of the corresponding type (i.e. a stapler) in its visual
field. If one is found, it moves its arm to one of three positions,
depending on whether the object appears in the left, center, or
right of its visual field. The remaining work to fully implement
this activity is non-linguistic, in the form of more, improved
object classifiers and fully realized grasping and manipulation.

2. Speech Processing
2.1. Automatic Speech Recognition

We use CMU's state-of-the-art large vocabulary speech recog-
nition system, Sphinx-31] for automatic speech recognition

of the user’s speech commands. Sphinx uses Hidden Markov
Models (HMM) with continuous output probability density
functions and is based on the conventional Viterbi search al-
gorithm and beam search heuristics. Sphinx-3’s “Live Decode”
mode also has a speaker adaptation component, which improves
ASR performance after about ten seconds of speech.

To decode speech with Sphinx-3, we first need to provide it
with an acoustic model, a language model and a phonetic lexi-
con. We use the HUB4 (broadcast news) acoustic model trained
on wideband (16kHz) speech, which is available for free down-
load from the sphinx website. The models have been trained
with Mel-frequency cepstra (MFC) vectors obtained from 140
hours of 1996 and 1997 hub4 training data. Each vector is a
39-dimensional vector composed of 13 cepstral coefficients, 13
delta cepstra and 13 double delta cepstra. The models are 3-
state within-word and cross-word triphone HMMs with no skips
permitted between states. They comprise of 6000 senones and
the number of codewords used in the sub-vector quantization
is 1024 for 1 Gaussian/state models, 2048 for 2 Gaussian/state
models and 4096 for 4,8 Gaussian/state models.

We used the Sphinx Knowledge Base Tod] fo train a
trigram language model on a sample corpus of about 100 sen-



tences from our domain (object retrieval). This tool also gen-
erated the phonetic lexicon containing pronunciations for each
of the 34 words in our vocabulary. Our vocabulary consists of
synonyms for fetching (grab, fetch, get, bring), a few function
words (a, the, me, your), and common household objects (sta-
pler, cup, mug, keys, apple, peach, banana, bottle, remote). In
addition, we added vocabulary for basic movement commands,
like “move your arm left”.

2.2. Natural Language Under standing

To make sense of the decoded utterance provided by the ASR
component, we need to perform some basic Natural Lan-
guage Understanding (NLU). We focus on verb-object syntac-
tic forms, like “Grab the stapler”, since in our current activity it
is always a person asking STAIR to do something (so subjects
are always implied). Thus, ASR output strings that contain only
one verb and one noun (not pronoun) are mapped to a command
to “verb the noun”. On the other hand, strings we cannot make
sense of are more complicated noun phrase structures, which in
our case are a good indicator that we had problems with ASR
(e.g. “fetch the remote banana a”) and thus should seek clar-
ification before acting. Some of the “rules” that the NLU has
are:

e |f the utterance contains “arm” or “hand”, “move” and
one of “up”, “down”, “left”, or “right” then move the
arm in the desired direction.
If the utterance contains one of “mug”, “banana”, “sta-
pler”, “apple”, “peach”, “cup”, “bottle”, “glass”, “re-
mote”, or “phone” and one of “fetch”, “grab”, “get”, or
“bring” then fetch the desired object.
If the utterance does not meet the above conditions, do
nothing.

2.3. Speech Synthesis

We use the Festival Speech Synthesis Systgnfofr text to
speech synthesis using an American English male voice. It uses
the UniSyn residual excited LPC diphone synthesizer and the
letter to sound rules trained from the CMU lexicon for pronunci-
ation. The intonation and duration information are trained from
the Boston University FM Radio corpus. The node controlling
Festival receives the text to be synthesized from the NLU and
then “speaks” this response out to the user.

3. Vision

We require as input to our system a trained object classifier for
any class of objects which we have a corresponding noun. We
used the STAIR Vision Library19] which contains code for
training and evaluating sliding window detectors, among other
common computer vision tasks like image segmentation.

The focus of this quarter project is on speech and not vi-
sion, so our methods used here are basic and leave much room
for improvement. Ideally we would have a pre-trained object
detector for every noun in our lexicon, but we only manage to
get object classifiers for “mug” and “stapler”. These detectors
take a window in the image and return a score (normalized be-
tween zero and one) of how likely the given object is to occur
in that window.

These detectors are trained on hand labeled training in-
stances, using a form of boosted decision stumps over a dictio-
nary of “patches”, or common local patterns of image features
which are robust to occlusions and shape variati@@% [See
[16] for more details on the training procedure.

To detect objects in a new image, we “slide” this window
over the image, varying the window size. Next we threshold the
detection scores at a given level treating all detection win-
dows with score greater th@mas positive and ignoring the rest.

Critically, we do not perform any post-processing on the
output of the sliding window object detector. This means that
if for a given window we get positive results from both detec-
tors, we will believe there is both a mug and a stapler there. This
could actually be the correct answer in the case of occlusions, or
if we are viewing the objects from a perspective that makes them
collinear when projected onto the camera lens. Secondly, we do
not use anyontextfeatures, such as the output of an image seg-
mentation algorithm. Recent research in computer visidgh [
suggests that false positives can be greatly reduced through the
use of nearby image segmentation labels. This interaction cap-
tures the fact that staplers are oftentimes on the tops of tables,
but not on walls for instance. Lastly, STAIR also has access
to accurate depth maps returned by the “Borg” laser scanner, as
introduced in 16], which shows that depth information can also
aid in object recognition.

4. Manipulation

STAIR is fitted with a Neuronics “Katana” 5 degree-of-freedom
(DOF) arm. Fitted with two fingers for grasping, the arm is
driven by harmonic drives which are located at each joint. It
can lift roughly 3kg, which is sufficient to lift most common
household objects.

The arm software includes source code for common tasks
such a calibrating the arm, opening and closing the gripper, and
moving to a given configuration, which is specified by the de-
sired angle of all 5 degrees of freedom. The STAIR group has
developed code to predict grasp points on novel imatjgsaind
also for motion planning and control to grab an object at a given
point in arm-space.

As the focus of this work was on speech recognition and
synthesis, we did not fully implement grasping. Instead, given
a positive object detection that we want to grab, we move the
arm in the general direction of the object (left, straight ahead,
or right), varying by the midpoint of the bounding box of the
object.

5. System Architecture

The Robot Operating System (ROS3J] is an open source dis-
tributed platform for controlling robot components. Systems
using ROS are composed of nodes, are processes which com-
municate messages over “topics”, which other nodes can sub-
scribe and publish to. There is a master controller node which
contains the registry of what is on the network, with a network
consisting of a series of ROS nodes and “topics”. When nodes
are started they register with the master controller, announcing
what messages they subscribe to and what messages they pub-
lish. The core node then facilitates telling publishers where the
subscribers are. We have eight ROS nodes, broken up into six
packages: Audio, Speech Recognition, Natural Language Un-
derstanding, Speech Synthesis, Vision, Robotics. Each package
consists of one or more ROS nodes, as depicted in Fijure

5.1. Audio

ROS audio signal processing utilizes the portaudio library to
interface with the audio card and write audio files. The audio
is sampled at 16kHz clipped when the energy level increases
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Figure 1: Message flow between ROS nodes

above a set threshold, until energy drops below the threshold.
The audio module publishes to thadio_loc ROS topic at the
completion of every clip, allowing further processing nodes to
run.

5.2. Speech Recognition

We wrote a ROS node for calling Sphinx3. We modified
Sphinx3'slivepretendprogram to accept input directly from our
ROS wrapper (which subscribes to thedio_loc topic to get
audio clips). This enabled us to decode a “cached” speaker clip
first, so that we don’t have to rerun speaker adaptation for every
utterance. The string of decoded speech was published to the
nlu topic.

5.3. Natural Language Under standing

This node performed the “Natural Language Understanding”
computation, which was invoked for every message omthe
topic. The outputs from the NLU script which resulted in an ac-
tion were: vision, for publishing commands to the vision chan-
nel; arm, for publishing general robot arm movements; hand,
for publishing opening or closing of hand movements; Borg,
for firing the laser; and null for doing nothing. The vision, arm
and hand commands, were followed by arguments specifying
what kind of action to publish.

The NLU node also subscribed to the result of image clas-
sification on theobject_detection topic. Once it published a
vision command, it stored the linguistic state, so that when a
message arrived on ttubject_detection channel, it could cor-
relate it and publish an appropriate preprogrammed response to
thetts channel and if appropriate the robot arm.

5.4. Vision

The vision package was composed of an image grabber node
and an image classification node. The first node subscribed to
theimage_grab channel and when it got input it took a photo
with the camera. It then published this information to ihe
age_loc topic where the image classifier was listening and the
image classifier ran the image classifier script. The output was
then published to thebject_detection topic where the NLU
node interpreted it.

ASR Evaluation
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Figure 2: Error rates for various speakers

5.5. Speech Synthesis

This node simply subscribed to thistopic and invoked festival
to produce utterances received ot

5.6. Robotics

This node controlled the position of the arm. It subscribed to
thekatana_command topic and executed incoming commands,
which are currently propositional. For exampleLEFT was
received, then it proceeded to move the robot base joint left
thirty degrees.

6. Evaluation

We evaluated the performance of our speech system by con-
ducting a user study with twelve test subjects. Each user read a
set of one hundred commands to the system and the number of
times the system performs as per the user’s intentions is calcu-
lated (NLU accuracy). We also use the NIST speech recognition
scoring toolkit (SCLITE) B] to do a more detailed analysis of
the speech recognition errors. SCLITE computes the Word Er-
ror Rate (WER), the Sentence Error Rate (SER), and classifies
errors into those arising from substitution, insertion and dele-
tion.

While WER certainly is a good indicator of the ASR accu-
racy, the user’s utterance being recognized verbatim is not nec-
essary for our system to function correctly. Our performance
is more strongly dependent on correctly recognizing content
words (nouns, verbs), while nuanced usage of determiners (like
“a”, “an” and “the”) is not as important. Thus, we calcu-
late a separate NLU error rate, i.e. the number of times the
STAIR misunderstood the meaning of the user’s utterance and
did something in contrast to what was expected. The results
from our experiments are summarized in Table 1.

| Metric | Percentage Errof
NLU Error Rate 21.8
Word Error Rate 19.7
Sentence Error Rate 455

Table 1: Evaluation results on a test set of 1,188 sentences
containing a total of 4,104 words, with 12 different speakers
speaking 99 sentences each.

The above results indicate that on an average, our system
performs correctly nearly 80% of times it is used. Further error
analysis reveals that:

e Our system did a worse job on speakers who tried to

be overcautious in enunciating every word properly (and
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Figure 3: Error rates for different speaker categories

hence ended up sounding artificial) than speakers who
spoke in a natural free flowing manner.

Our system performed better with male speakers than fe-
male speakers on average.

Our system had a much better recognition accuracy with
native English speakers than non-natives. However, the
NLU error rates for both were almost the same indicating
that most of the mistakes that the ASR made with non-
native speakers was in the “a’s” and “the’s”. Thus the
system is usable by speakers of both kinds.

7. Future Work

ral extensions and improvements which we plan to imple-

ment next quarter are:

improve and expand object detectors to more household
things

train an acoustic model for noisy environments
implement a real dialog system with task confirmations
and clarifications

implement grasping with the Katana arm, as well as
grasp point prediction in the vision module

integrate the STAIR navigation components to be able to
move the entire robot

build a more mature NLU component, using more so-
phisticated theories of syntax (CS224N)

add a more sophisticated theory of activity, integrating
reactivity to changes in the environment with intentional,
temporally extended policies.
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